Translucency of Recently Introduced Extra High Translucency Zirconia
Author(s): Mohammad S Alkatheeri, AbdulAziz Altahtam, Abdullah Abukhalaf, Turki Almaslokhi, Abdulrahman Almusalam and Thamer S Almohareb*
Abstract
Aim: To compare the translucency of three recently introduced esthetic zirconia, Argen Z Anterior (Argen Corporation), Ceramill Zolid FX (Amann Girrbach AG), and Prettau Anterior (Zirkonzahn), with that of a commonly used esthetic ceramic material (lithium disilicate), IPS e.max CAD LT (Ivoclar Vivadent).
Materials and methods: The three partially sintered zirconia materials were sectioned using a low-speed water-cooled diamond saw into a square shape, and the final dimensions of [10.0 × 10.0 × 1.5 mm] (n=10/group) were acquired after sintering. As a reference group, the partially sintered lithium disilicate (IPS e.max CAD LT) blocks were sectioned and sintered into similar shapes and dimensions. Then, all samples were finished and polished. The CIE L*a*b* values for each sample were measured on a black and a white background using a spectrophotometer (LabScan XE, Hunter Lab). Then, the values of the translucency parameter (TP) were calculated. Furthermore, all samples were reduced to 1.0 mm in thickness, and the TP was obtained for a second reading. Finally, the data were statistically analyzed.
Results: The control group [IPS e.max CAD LT] was significantly more translucent than the other tested groups (P<0.05). The (Ceramill Zolid FX) zirconia material was significantly less translucent than the other two zirconia materials (ArgenZ Anterior and Prettau Anterior Zirkonzahn). There was no significant difference between the TP value of ArgenZ Anterior at the thickness of 1.0 mm and that of the control group at the thickness of 1.5 mm. Conclusion: By decreasing the thickness of the specimens, the TP will be increased. The (ArgenZ Anterior) and (Zirkonzahn) groups were more translucent than the (Ceramill Zolid FX) group. There was no significant difference between the translucency of (ArgenZ Anterior) reduced to 1.0 mm and that of the IPS e.max group at a 1.5 mm thickness (P< 0.05).